

X axis | XP-611.X100S/K

Piezo Nanopositioning Stage

Introduction

XP-611.X100 is an X-axis piezo nanopositioning stage. It adopts amplified mechanism and built-in high-performance piezo actuator. It could realize 100µm displacement in X-axis. Closed-loop version has high positioning accuracy and is ideal for precision positioning and scanning.

Characteristics >>

- Active axes X
- Max stroke to 100µm
- Small size
- Fast response time
- · Nanoscale positioning accuracy

Applications >>

- Biotechnology
- · Precision positioning
- · Nanometer positioning
- Fiber optic positioning/optical scanning
- Microimaging
- · Micro machining/precision control
- Semiconductor technology
- Interferometry/scanning microscopy

Harbin Core Tomorrow Science & Technology Co., Ltd.

Technical Data >>

Type S-Closed loop K-Open loop	XP-611.X100S	XP-611.X100K	Units
Active axis	Χ	X	
Travel range(0~120V)	80	80	μm±10%
Travel range(0~150V)	100	100	μm±10%
Sensor	SGS	-	
Resolution	3	1	nm
Closed-loop linearity	0.2	-	%F.S.
Repeatability	0.05	-	%F.S.
Pitch/yaw/roll	<15	<15	μrad
Push/pull force capacity	30/10	30/10	N
Stiffness	0.3	0.3	N/µm±20%
Unloaded resonant frequency	0.28	0.28	kHz±20%
Unloaded Step time	10	0.8	ms±20%
Closed-loop operating frequency (-3dB)	50 (unloaded)	50 (unloaded)	Hz±20%
Load capacity	0.8	0.8	kg
El. capacitance	1.8	1.8	μF±20%
Operating temperature ^[1]	-20~80	-20~80	℃
Material	Steel, Aluminum	Steel, Aluminum	
Size(L×W×H)	35×35×20	35×35×20	mm
Mass	80	80	g±5%
Cable length ^[2]	1.5	1.5	m±10mm
Sensor/voltage connector ^[2]	-	-	

Note: Max driving voltage could be -20V \sim 150V, 0 \sim 120V is recommended for long-term and high-reliable operation.Unless otherwise specified, the above parameters are measured at room temperature about 25° C.

- [1] Custom ultralow temperature and ultrahigh vacuum versions are available.
- [2] Custom cable length and connector is available.

Note: The parallelism of the moving platform is about $20\mu m$, and the roughness is about 1.6 to 3.2. Please contact the sales engineer for confirmation before purchase.

Curves >>

Disclaimer: The data here are typical, only for reference. Some variations will occur for different batch.

Drawing >>

Recommended Controllers >>

E01.D1 LCD, membrane button, up to 625mA RS-232/RS-422/USB interface Software secondary development

E53 Small size, 60mA RS-232/RS-422/USB interface Software secondary development

